CORE
We offer a comprehensive range of polyurethane systems, with a number of different grades of raw material formulations available, each providing significant benefits such as strength, density, flexibility, UV resistance and flammability resistance.
Here we have our polyurethane soft foam moulding cell, capable of producing 10,000 armrest foam pads per week for a high-volume automotive customer.
With our automatic carousel and KUKA robot for automatic precision pouring we are able to produce 1/2 million armrests a year at our Linecross Cannock site.
Our extensive polyurethane range of systems include:
Suitable for e.g. armrests, waist-rails and console lids.
Soft PU foam, also known as flexible polyurethane foam, is a type of polyurethane foam that is engineered to be soft, cushiony, and highly comfortable. It is widely used in a variety of applications where comfort and support are essential. Soft PU foam is produced through a chemical reaction between polyols and isocyanates, which generates a foam with an open-cell structure.
The cell structure allows air to flow freely within the foam, giving it its characteristic softness and resilience. The level of softness can be adjusted during the manufacturing process by varying the formulation of the foam. This allows for a range of firmness options, from very soft and plush to slightly firmer, depending on the intended use.
Suitable for use in grab handles and energy absorbent restraints.
Integral PU foam, also known as integral skin polyurethane foam or simply integral foam, is a type of polyurethane foam that possesses a unique structure. It is called "integral" because the outer skin and the core are formed together in a single manufacturing process.
The integral PU foam is created using a chemical reaction that involves two main components: a polyol blend and an isocyanate. When these components are mixed, they undergo a foaming reaction. During this process, the outer skin of the foam is formed due to the rapid reaction of the chemicals, while the core remains in a more liquid state.
The outer skin of integral PU foam has a higher density and a more compact structure compared to the inner core, which remains softer and less dense. This results in a material with a tough, durable, and abrasion-resistant outer layer, while the inner core remains lightweight, flexible, and comfortable.
At Linecross we use this process to manufacture a variety of products for our clients such as armrests, handles, and other applications where a combination of durability and comfort is required. It is well-suited for items that need to withstand wear and tear while still providing a pleasant tactile experience.
SRIM combines the benefits of traditional injection moulding and composite materials, resulting in parts that exhibit enhanced strength, stiffness, and impact resistance.
The SRIM process involves injecting liquid reactive components, typically a mixture of resin and fibre reinforcement, into a mould. The mould is usually heated and pressurised to facilitate the chemical reaction and curing of the resin. The reaction creates a solid composite part with high strength-to-weight ratio, excellent dimensional accuracy, and complex shapes (typically 20-30% lighter than injection mouldings)
Examples include front-end modules, boot floors, bulkheads, instrument panels, door panels, and reinforcement for engine covers.
Overall, SRIM combines the advantages of composite materials with the efficiency of the reaction injection moulding process, making it a preferred choice for manufacturing structurally strong yet lightweight components used in various industries, including automotive, aerospace, and construction.
At Linecross we provide a complete ‘concept to production’ service from customised product development to assembly and sequenced supply. Find out more about how our range of processes can support your business.
web design - Dsquared